首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distances between 3' ends of ribosomal ribonucleic acids reassembled into Escherichia coli ribosomes
Authors:O W Odom  D J Robbins  J Lynch  D Dottavio-Martin  G Kramer  B Hardesty
Abstract:The three ribonucleic acids (RNAs) from Escherichia coli ribosomes were isolated and then labeled at their 3' ends by oxidation with periodate followed by reaction with thiosemicarbazides of fluorescein or eosin. Ribosomal subunits reconstituted with the labeled RNAs were active for polyphenylalanine synthesis. The distances between the 3' ends of the RNAs in 70S ribosomes were estimated by nonradiative energy transfer from fluorescein to eosin. The percentage of energy transfer was calculated from the decrease in fluorescence lifetime of fluorescein in the quenched sample compared to the unquenched sample. Fluorescence lifetime was measured in real time by using a mode-locked laser for excitation and a high-speed electrostatic photomultiplier tube for detection of fluorescence. The distances between fluorophores attached to the 3' ends of 16S RNA and 5S RNA or 23S RNA were estimated to be about 55 and 71 A, respectively. The corresponding distance between the 5S RNA and 23S RNA was too large to be measured reliably with the available probes but was estimated to be greater than 65 A. Comparison of the quantum yields of the labeled RNAs free in solution and reconstituted into ribosomal subunits suggests that the 3' end of 16S RNA does not interact appreciably with other ribosomal components and may be in a relatively exposed position, whereas the 3' ends of the 5S RNA and 23S RNA may be buried in the 70S ribosomal subunit.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号