首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sediment-water fluxes of dissolved inorganic carbon, O2, nutrients, and N2 from the hypoxic region of the Louisiana continental shelf
Authors:John C Lehrter  David L Beddick Jr  Richard Devereux  Diane F Yates  Michael C Murrell
Institution:1. Gulf Ecology Division, US EPA, NHEERL, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
Abstract:Globally, hypoxic areas (<63?mmol O2 m?3) in coastal waters are increasing in number and spatial extent. One of the largest coastal hypoxic regions has been observed during the summer in the bottom-water of the Louisiana continental shelf. The shelf receives the sediments, organic matter, and nutrients exported from the Mississippi River watershed, and much of this material is ultimately deposited to the sea floor. Hence, quantifying the rates of sediment-water dissolved inorganic carbon (DIC), oxygen (O2), and nutrient fluxes is important for understanding how these processes relate to the development and maintenance of hypoxia. In this study, the sediment-water fluxes of DIC, O2, nutrients, and N2 (denitrification) were measured on the Louisiana shelf during six cruises from 2005 to 2007. On each cruise, three to four sites were occupied in or directly adjacent to the region of the shelf that experiences hypoxia. DIC fluxes, a proxy for total sediment respiration, ranged from 7.9 to 21.4?mmol?m?2 day?1 but did not vary significantly either spatially or as a function of bottom-water O2 concentration. Overall, sediment respiration and nutrient flux rates were small in comparison to water-column respiration and phytoplankton nutrient demand. Nitrate fluxes were correlated with bottom-water O2 concentrations (r?=?0.69), and there was evidence that decreasing O2 concentrations inhibited coupled nitrification-denitrification. Denitrification rates averaged 1.4?mmol?N?m?2 day?1. Scaled to the area of the shelf, the denitrification sink represented approximately 39% of the N load from the Mississippi River watershed. The sediment-water fluxes reported from this study add substantial information on the spatial and temporal patterns in carbon, O2, and nutrient cycling available for the Louisiana continental shelf and, thus, improve the understanding of this system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号