首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transduction of a signal for arachidonic acid metabolism by untriggered CSF-1 receptor induces an opposite effect to that induced by CSF-1 receptor and its ligand: separate regulation of phospholipase A2 and cyclooxygenase by CSF-1 receptor/CSF-1.
Authors:J Puri  J H Pierce  T Hoffman
Institution:Division of Hematology, US Food and Drug Administration, Bethesda, Maryland 20892.
Abstract:The mouse hematopoietic cell line, 32D, was transfected with c-fms, which encodes for the CSF-1 receptor, a tyrosine kinase (TK). In the absence of CSF-1, transfected cells show moderate levels of arachidonic acid (AA) release and produce a substantial amount of prostaglandin E2 (PGE2) in comparison with the original cell line. Exposure of transfected cells to CSF-1, while inducing a substantial increase in arachidonate release, nevertheless resulted in inhibition of PGE2 production. Addition of ST638, a tyrosine kinase inhibitor, to cells transfected with c-fms in the absence of CSF-1 inhibited PGE2 production within 10-60 min. Its addition to the same cells in the presence of CSF-1 induced an opposite effect, but required longer treatment (24 h). In either cell type, AA release was not affected by this agent. These data indicate that CSF-1 may regulate cyclooxygenase activity. The different effect of CSF-1 receptor on PGE2 production in the presence or absence of CSF-1 and the opposite effect of a tyrosine kinase inhibitor on PGE2 suggest that both the receptor alone or the receptor-ligand complex may transduce an active, but different, signal through tyrosine phosphorylation. CSF-1 receptor and CSF-1 may exert separate, but related, effects on phospholipase A2 and cyclooxygenase activity which, in concert, or along with other tyrosine kinases, regulate prostaglandin production.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号