首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence for the contribution of pseudocyclic photophosphorylation to the energy requirement of the mechanism for concentrating inorganic carbon in Chlamydomonas
Authors:Dieter Sültemeyer  Klaus Biehler  Heinrich P Fock
Institution:(1) Fachbereich Biologie, Universität Kaiserslautern, Postfach 3049, W-6750 Kaiserslautern, FRG
Abstract:Mass-spectrometric measurements of 16O2 and 18O2 were made to compare the rates of light-dependent O2 evolution and uptake by Chlamydomonas reinhardtii Dang. grown in air (0.035% CO2; low-Ci cells) or CO2-enriched air (5% CO2; high-Ci cells) at pH 5.5 and 8.0. While at pH 5.5, no differences were observed in the isotopic O2-gas exchange of high- and low-Ci cells, at pH 8.0 the rates of true O2 evolution and uptake were considerably higher in low-Ci than in high-Ci cells. The enhanced rates of O2 uptake and evolution by low-Ci cells were completely inducible within 6 h after transferring high-Ci cells to ambient air. At pH 8.0, O2 uptake in the light was inhibited by 2 mgrM 3-(3,4-dichlorophenyl)-1,1 dimethylurea in both types of alga, but this effect was more pronounced in low-Ci than in high-Ci cells.When the cells were grown at pH 5.5 the activities of the superoxide-radical-degrading enzymes, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase, were similar regardless of the CO2 concentration provided during growth. At pH 8.0, however, the activities of these enzymes were 4 to 20 times higher in low-Ci than in high-Ci cells. When high-Ci cells were allowed to acclimate to ambient air for 6 h at pH 8.0, the activities of superoxide dismutase, ascorbate peroxidase and monodehydroascorbate dehydrogenase increased to more than 50% of the level observed with low-Ci cells. These results are consistent with an enhanced operation of O2 photoreduction which could provide energy to the inorganic-carbon-concentrating mechanism via pseudo-cyclic photophosphorylation.
Keywords:Chlamydomonas  Inorganic-carbonconcentrating mechanism  Mehler reaction  Oxygen photoreduction  Pseudocyclic photophosphorylation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号