首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inducible permissive cells transformed by a temperature-sensitive polyoma virus: superinfection does not allow excision of the resident viral genome.
Authors:L Delbecchi  D Gendron  and P Bourgaux
Abstract:After exposure of mouse embryo cells to the early temperature-sensitive mutant tsP155 of polyoma virus (Py), a transformed cell line (Cyp line) that can be readily induced to synthesize Py by transfer to 33 degrees C was isolated at 39 degrees C (7). Virus production and synthesis of free viral DNA occurring after temperature shiftdown or superinfection with wild-type Py or both were studied in several clonal isolates of the Cyp cell line. Measurements of virus yields indicated that, although some could be induced more effectively than others, all cell clones behaved as highly permissive when subjected to superinfection. We analyzed the origin of free viral DNA accumulating in the superinfected cultures, taking advantage of (i) the unique physical properties of the low-molecular-weight DNA which, in the case of one of the Cyp clones, accumulates during temperature shiftdown, and (ii) the differences between resident and superinfecting viral genomes in their susceptibilities towards restriction endonucleases. At 33 degrees C, both viral genomes were found to accumulate in all clones studied whereas in the case of the clones with lower inducibility, the replication of the resident genome appeared to be enhanced by superinfection. At 39 degrees C, however, accumulation of the superinfecting genome was not accompanied by that of the resident genome, unless it had already been initiated before superinfection. These findings demonstrate that, when routinely cultivated at 39 degrees C, Cyp cells contain few viral DNA molecules readily available for autonomous replication and that, upon transfer to 33 degrees C, therefore, excision must first take place before the resident genome can accumulate as free viral DNA. Our findings also suggest that, unlike the P155 gene product provided by the resident viral genome upon induction, the allelic gene product supplied by the superinfecting genome may be less effective in triggering excision than in promoting replication.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号