首页 | 本学科首页   官方微博 | 高级检索  
     


Secretome analysis of ionizing radiation-induced senescent cancer cells reveals that secreted RKIP plays a critical role in neighboring cell migration
Authors:Na-Kyung Han  Bong Cho Kim  Hyung Chul Lee  Yoon-Jin Lee  Myung-Jin Park  Sung-Gil Chi  Young-Gyu Ko  Jae-Seon Lee
Affiliation:Divisions of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
Abstract:Cellular senescence is a physiological program of irreversible growth arrest that is considered to play an important role in tumor suppression. Recent studies demonstrated that senescent cells secrete multiple growth regulatory proteins that could alter the behavior of neighboring cells. In this study, we investigated the effect of secretory proteins from ionizing radiation (IR) induced senescent tumor cells on normal and tumor cells. Conditioned medium (CM) from IR-induced senescent MCF7 cells significantly increased cell proliferation, invasion, migration, and wound healing activity in MCF7 cells and HUVECs. Comparative proteomics analysis revealed 24 differentially secreted protein spots including Raf kinase inhibitor protein (RKIP), α-Enolase, AKAP9, and MARK4, and the findings were confirmed by Western blot analysis of IR-induced senescent cancer cells. We found that RKIP was secreted via the classical pathway, and the transfection of small interfering RNA against RKIP suppressed CM-induced migration in MCF7 cells. Treatment with recombinant human RKIP increased the migratory activity of MCF7 cells. Taken together, our results demonstrate that the senescence-associated secretory protein RKIP could be the principal target to prevent the potential effects of the secretome from IR-induced senescent tumor cells on neighboring cell migration.
Keywords:Biomedicine  Cellular senescence  Ionizing radiation  RKIP  Secretome  Tumor cells
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号