Comparison of the Properties of γ-Aminobutyric Acid and L-Glutamate Uptake into Synaptic Vesicles Isolated from Rat Brain |
| |
Authors: | Else M. Fykse Hege Christensen Frode Fonnum |
| |
Affiliation: | Division for Environmental Toxicology, Norwegian Defence Research Establishment, Kjeller, Norway. |
| |
Abstract: | ![]() Rat brain synaptic vesicles exhibit ATP-dependent uptake of gamma-[3H]amino-n-butyric acid ([3H]GABA) and L-[3H]glutamate. After hypotonic shock, the highest specific activities of uptake of both L-glutamate and GABA were recovered in the 0.4 M fraction of a sucrose gradient. The uptakes of L-glutamate and GABA were inhibited by similar, but not identical, concentrations of the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone and the ionophores nigericin and gramicidin, but they were not inhibited by the K+ carrier valinomycin. N,N'-Dicyclohexyl-carbodiimide and N-ethylmaleimide, Mg2+-ATPase inhibitors, inhibited the GABA and L-glutamate uptakes similarly. Low concentrations of Cl- stimulated the vesicular uptake of L-glutamate but not that of GABA. The uptakes of both L-glutamate and GABA were inhibited by high concentrations of Cl-. These results indicate that the vesicular GABA and L-glutamate uptakes are driven by an electrochemical proton gradient generated by a similar Mg2+-ATPase. The vesicular uptake mechanisms are discussed in relation to other vesicle uptake systems. |
| |
Keywords: | Synaptic vesicles Vesicular uptake Mg2 +-ATPase Proton gradient Inhibitors. |
|
|