Abstract: | Human pathogenic Bartonella henselae cause cat scratch disease and vasculoproliferative disorders (e.g. bacillary angiomatosis). Expression of Bartonella adhesin A (BadA) is crucial for bacterial autoagglutination, adhesion to host cells, binding to extracellular matrix proteins and proangiogenic reprogramming via activation of hypoxia inducible factor (HIF)-1. Like the prototypic Yersinia adhesin A, BadA belongs to the class of trimeric autotransporter adhesins and is constructed modularly consisting of a head, a long and repetitive neck-stalk module and a membrane anchor. Until now, the exact biological role of these domains is not known. Here, we analysed the function of the BadA head by truncating the repetitive neck-stalk module of BadA (B. henselae badA(-)/pHN23). Like B. henselae Marseille wild type, B. henselae badA(-)/pHN23 showed autoagglutination, adhesion to collagen and endothelial cells and activation of HIF-1 in host cells. Remarkably, B. henselae badA(-)/pHN23 did not bind to fibronectin (Fn) suggesting a crucial role of the deleted stalk domain in Fn binding. Additionally, the recombinantly expressed BadA head adhered to human umbilical vein endothelial cells and to a lesser degree to epithelial (HeLa 229) cells. Our data suggest that the head represents the major functional domain of BadA responsible for host adhesion and angiogenic reprogramming. |