首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of the binding characteristics of a fluorescent nucleotide derivative to the sarcoplasmic reticulum adenosinetriphosphatase
Authors:J E Bishop  R K Nakamoto  G Inesi
Abstract:Trinitrophenyladenosine monophosphate (TNP-AMP) binding to the phosphorylated Ca2+-ATPase of sarcoplasmic reticulum results in manyfold higher fluorescence intensity and longer lifetimes of the nucleotide analogue, as compared to TNP-AMP binding to the nonphosphorylated enzyme. This is observed when the phosphoenzyme intermediate is formed either from ATP or from inorganic phosphate (Pi). An important question is whether the TNP-AMP fluorescence properties can also reflect the kinetically defined interconversions of different phosphoenzyme species during catalysis. We have approached this question by manipulating the phosphorylation conditions in a manner which is known to result in accumulation of different species of the phosphoenzyme, i.e., by variations in pH, substrates, and K+ and Ca2+ concentrations. Decreasing pH or increasing [K+] caused large decreases in fluorescence intensity at a given concentration of TNP-AMP under conditions of phosphorylation with either ATP or Pi. In contrast, low to high intravesicular Ca2+ concentrations had no effect on fluorescence during steady-state turnover. TNP-AMP titrations of the phosphorylated enzyme stabilized in different states revealed that H+ and K+ caused a shift in TNP-AMP binding affinity to the site responsible for high fluorescence enhancement, while maintaining approximately the same maximal fluorescence yield at saturation. The fluorescence lifetimes of TNP-AMP bound to phosphoenzyme did not change with variations in pH, [K+], and substrates. We conclude that the environment of that part of the TNP-AMP binding site which binds the trinitrophenyl moiety undergoes a change upon enzyme phosphorylation resulting in enhanced fluorescence yield; this change is invariant between different phosphoenzyme species.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号