首页 | 本学科首页   官方微博 | 高级检索  
     


Role of the carboxyl terminal region of H(+)-ATPase (F0F1) a subunit from Escherichia coli.
Authors:S Eya  M Maeda  M Futai
Affiliation:Department of Organic Chemistry and Biochemistry, Osaka University, Japan.
Abstract:The effects of amino acid substitutions in the carboxyl terminal region of the H(+)-ATPase a subunit (271 amino acid residues) of Escherichia coli were studied using a defined expression system for uncB genes coded by recombinant plasmids. The a subunits with the mutations, Tyr-263----end, Trp-231----end, Glu-219----Gln, and Arg-210----Lys (or Gln) were fully defective in ATP-dependent proton translocation, and those with Gln-252----Glu (or Leu), His-245----Glu, Pro-230----Leu, and Glu-219----His were partially defective. On the other hand, the phenotypes of the Glu-269----end, Ser-265----Ala (or end), and Tyr-263----Phe mutants were essentially similar to that of the wild-type. These results suggested that seven amino acid residues between Ser-265 and the carboxyl terminus were not required for the functional proton pathway but that all the other residues except Arg-210, Glu-219, and His-245 were required for maintaining the correct conformation of the proton pathway. The results were consistent with a report that Arg-210 is directly involved in proton translocation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号