首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gaseous transmitters in the brain of the masu salmon, <Emphasis Type="Italic">Oncorhynchus masou</Emphasis> (Salmoniformes,Salmonidae)
Authors:E V Pushchina  A A Varaksin  D K Obukhov
Institution:1.Zhirmunskii Institute of Marine Biology,Far Eastern Branch of the Russian Academy of Sciences,Vladivostok,Russia;2.St. Petersburg State University,St. Petersburg,Russia
Abstract:Distribution of nitroxidergic and H2S-producing neurons in the brain of the masu salmon Oncorhynchus masou was studied by methods of histochemical labeling of NADPH-diaphorase and by immunohistochemical labeling of the neuronal nitric oxide synthase and cystathionine β-synthase (CBS). The established distribution of CBS and nNOS/NADPH-d of neurons and fibers in the masu salmon telencephalon, optic tectum, and cerebellum allows suggesting that the NO- and H2S-producing systems represent individual, non-overlapping neuronal complexes performing specialized functions in the activity of local neuronal networks. In the medullar part, the nNOS-ir and NADPH-d-positive neurons were detected in the composition of viscerosensory (V, VII, and IX–X) and visceromotor (III, IV, and VI) nuclei of craniocerebral nerves, octavolateral afferent complex, reticulospinal neurons, and medial reticular formation. CBS in the masu salmon medulla was revealed in neurons of the nerve X nucleus, reticulospinal neurons, and ventrolateral reticular formation. Distribution of NO-ergic and H2S-producing neurons in the masu salmon medullar nuclei indicates that NO in masu salmon is the predominant neuromodulator of the medullar viscerosensory systems, while H2S seems to modulate only the descending motor systems. The results of the performed study allow suggesting that NO in the masu salmon medulla periventricular area can act as a regulator of postnatal ontogenesis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号