Abstract: | ![]() Previously, platelet-activating factor (PAF, PAF-acether, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) had been identified in association with a lamellar-body-enriched fraction of human amniotic fluid obtained from women in labor. In consideration of the fact that fetal lung is the source of lamellar bodies, we have investigated the capacity of the developing lung to synthesize PAF. The specific activity of the PAF biosynthetic enzyme, 1-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase, increased from 116 pmol/min per mg protein in day 21 fetal rabbit lung to 332 pmol/min per mg protein by day 31. Although this enzymatic activity in fetal kidney also increased, it never reached the level found in lung. In contrast, the actyltransferase activity decreased by 80% in fetal liver between days 21 and 31. The acetyltransferase activity in lung was primarily localized in the microsomal fraction (105 000 X g pellet); however a significant proportion of the activity was found in the 18 000 X g pellet. The specific activity of acetyltransferase in adult alveolar type II rat pneumonocytes was significantly higher than that of adult rat lung or rat alveolar macrophages, suggesting that type II cells make a significant contribution to the actyltransferase activity of lung tissue. PAF acetylhydrolase remained relatively constant throughout the gestation in all tissues. The concentration of PAF in the fetal lung increased by 3-fold from 12 to 35 fmol/mg protein, between day 21 and day 31 of development. The concentrations of the PAF precursors, 2-lyso-PAF (1-alkyl-2-lyso-sn-glycero-3-phosphocholine) and the 2-acyl derivative, were several orders of magnitude higher than the PAF concentration. The pulmonary glycogen content decreased from 163 at day 21 to 35 micrograms/mg protein at day 31 of gestation. We suggest that the increase in PAF concentration may participate in the regulation of glycogen breakdown in fetal lung as it does in perfused rat liver (Shukla, S.D., Buxton, D.B., Olson, M.S. and Hanahan, D.J. (1983) J. Biol. Chem. 258, 10212-10214). The formation of PAF in the developing lung and its secretion, in association with lamellar bodies, into amniotic fluid is discussed in relation to parturition. |