首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spatial modelling of ecological indicator values improves predictions of plant distributions in complex landscapes
Authors:Patrice Descombes  Lorenz Walthert  Andri Baltensweiler  Reto Giulio Meuli  Dirk N Karger  Christian Ginzler  Damaris Zurell  Niklaus E Zimmermann
Institution:1. Swiss Federal Research Inst. WSL, Birmensdorf, Switzerland;2. Agroscope, Swiss Soil Monitoring Network NABO, Zürich, Switzerland
Abstract:Ecologically meaningful predictors are often neglected in plant distribution studies, resulting in incomplete niche quantification and low predictive power of species distribution models (SDMs). Because environmental data are rare and expensive to collect, and because their relationship with local climatic and topographic conditions are complex, mapping them over large geographic extents and at high spatial resolution remains a major challenge. Here, we propose to derive environmental data layers by mapping ecological indicator values in space. We combined ~6 million plant occurrences with expert-based plant ecological indicator values (EIVs) of 3600 species in Switzerland. EIVs representing local soil properties (pH, moisture, moisture variability, aeration, humus and nutrients) and climatic conditions (continentality, light) were modelled at 93 m spatial resolution with the Random Forest algorithm and 16 predictors representing meso-climate, land use, topography and geology. Models were evaluated and predictions of EIVs were compared with soil inventory data. We mapped each EIV separately and evaluated EIV importance in explaining the distribution of 500 plant species using SDMs with a set of 30 environmental predictors. Finally, we tested how they improve an ensemble of SDMs compared to a standard set of predictors for ca 60 plant species. All EIV models showed excellent performance (|r| > 0.9) and predictions were correlated reasonably (|r| > 0.4) to soil properties measured in the field. Resulting EIV maps were among the most important predictors in SDMs. Also, in ensemble SDMs overall predictive performance increased, mainly through improved model specificity reducing species range overestimation. Combining large citizen science databases to expert-based EIVs is a powerful and cost–effective approach for generalizing local edaphic and climatic conditions over large areas. Producing ecologically meaningful predictors is a first step for generating better predictions of species distribution which is of main importance for decision makers in conservation and environmental management projects.
Keywords:citizen science  ecological indicator values  Ellenberg  high resolution  humidity  Landolt  pH  soil  species distribution models  Switzerland  wetness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号