首页 | 本学科首页   官方微博 | 高级检索  
   检索      


QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber
Authors:Hongfeng Lu  Tao Lin  Joël Klein  Shenhao Wang  Jianjian Qi  Qian Zhou  Jinjing Sun  Zhonghua Zhang  Yiqun Weng  Sanwen Huang
Institution:1. Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS, Beijing, 100081, China
2. Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, 6708 PB, Wageningen, The Netherlands
3. Vegetable Crops Research Unit, Department of Horticulture, United States Department of Agriculture (USDA), ARS, University of Wisconsin, Madison, WI, USA
Abstract:

Key message

Next-generation sequencing enabled a fast discovery of a major QTL controlling early flowering in cucumber, corresponding to the FT gene conditioning flowering time in Arabidopsis.

Abstract

Next-generation sequencing technologies are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Early flowering is an important agronomic trait in cucumber (Cucumis sativus L.), but the underlying genetic mechanism is unknown. In this study, we identified a candidate gene for early flowering QTL, Ef1.1 through QTL-seq. Segregation analysis in F2 and BC1 populations derived from a cross between two inbred lines “Muromskij” (early flowering) and “9930” (late flowering) suggested quantitative nature of flowering time in cucumber. Genome-wide comparison of SNP profiles between the early and late-flowering bulks constructed from F2 plants identified a major QTL, designated Ef1.1 on cucumber chromosome 1 for early flowering in Muromskij, which was confirmed by microsatellite marker-based classical QTL mapping in the F2 population. Joint QTL-seq and traditional QTL analysis delimited Ef1.1 to an 890 kb genomic region. A cucumber gene, Csa1G651710, was identified in this region, which is a homolog of the FLOWERING LOCUS T (FT), the main flowering switch gene in Arabidopsis. Quantitative RT-PCR study of the expression level of Csa1G651710 revealed significantly higher expression in early flowering genotypes. Data presented here provide support for Csa1G651710 as a possible candidate gene for early flowering in the cucumber line Muromskij.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号