首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolution of the ATP-binding-cassette transmembrane transporters of vertebrates
Authors:Hughes  AL
Institution:Department of Biology, Pennsylvania State University, University Park 16802.
Abstract:The ATP-binding-cassette transmembrane transporters (ABC transporters) known from vertebrates belong to four major subfamilies: (1) the P- glycoproteins (Pgp); (2) the cystic fibrosis transmembrane conductance regulators (CFTR); (3) the Tap proteins encoded with the major histocompatibility complex of mammals; and (4) the peroxisomal membrane proteins. Both Pgp and CFTR have a structure suggesting a past internal gene duplication; a phylogenetic analysis indicated that these duplications occurred independently, while an independent tandem gene duplication occurred in the case of the Tap family. Both the Pgp and Tap proteins show evidence of relationship to bacterial ABC transporters lacking internal duplication, and both are significantly more closely related to the HlyB and MsbA families of transporters from purple bacteria than they are to ABC transporters from nonpurple bacteria. The simplest hypothesis to explain this observation is that eukaryotic Pgp and Tap genes are descended from a mitochondrial gene or genes that were subsequently translocated to the nuclear genome. The Pgp genes of eukaryotes are characterized by a remarkable degree of convergent evolution between the ATP-binding cassettes of their N- terminal and C-terminal halves, whereas no such convergence is seen between the two halves of CFTR genes or between the duplicated Tap genes. Exon 13 of the CFTR gene, which encodes a putative regulatory domain not found in other ABC transporters apart from CFTR, showed high levels of both synonymous and nonsynonymous difference in comparisons among different mammalian species, suggesting that this region is a mutational hot spot.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号