首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased tolerance to oxygen and glucose deprivation in astrocytes from Na(+)/H(+) exchanger isoform 1 null mice
Authors:Kintner Douglas B  Su Gui  Lenart Brett  Ballard Andy J  Meyer Jamie W  Ng Leong L  Shull Gary E  Sun Dandan
Institution:Department of Neurosurgery, University of Wisconsin Medical School, Madison, WI 53792, USA.
Abstract:The ubiquitously expressed Na(+)/H(+) exchanger isoform 1 (NHE1) functions as a major intracellular pH (pH(i)) regulatory mechanism in many cell types, and in some tissues its activity may contribute to ischemic injury. In the present study, cortical astrocyte cultures from wild-type (NHE1(+/+)) and NHE1-deficient (NHE1(-/-)) mice were used to investigate the role of NHE1 in pH(i) recovery and ischemic injury in astrocytes. In the absence of HCO(3)(-), the mean resting pH(i) levels were 6.86 +/- 0.03 in NHE1(+/+) astrocytes and 6.53 +/- 0.04 in NHE1(-/-) astrocytes. Removal of extracellular Na(+) or blocking of NHE1 activity by the potent NHE1 inhibitor HOE-642 significantly reduced the resting level of pH(i) in NHE1(+/+) astrocytes. NHE1(+/+) astrocytes exhibited a rapid pH(i) recovery (0.33 +/- 0.08 pH unit/min) after NH(4)Cl prepulse acid load. The pH(i) recovery in NHE1(+/+) astrocytes was reversibly inhibited by HOE-642 or removal of extracellular Na(+). In NHE1(-/-) astrocytes, the pH(i) recovery after acidification was impaired and not affected by either Na(+)-free conditions or HOE-642. Furthermore, 2 h of oxygen and glucose deprivation (OGD) led to an approximately 80% increase in pH(i) recovery rate in NHE1(+/+) astrocytes. OGD induced a 5-fold rise in intracellular Na(+)] and 26% swelling in NHE1(+/+) astrocytes. HOE-642 or genetic ablation of NHE1 significantly reduced the Na(+) rise and swelling after OGD. These results suggest that NHE1 is the major pH(i) regulatory mechanism in cortical astrocytes and that ablation of NHE1 in astrocytes attenuates ischemia-induced disruption of ionic regulation and swelling.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号