首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phalanx force magnitude and trajectory deviation increased during power grip with an increased coefficient of friction at the hand-object interface
Authors:Enders Leah R  Seo Na Jin
Institution:Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211, USA. lrenders@uwm.edu
Abstract:This study examined the effect of friction between the hand and grip surface on a person's grip strategy and force generation capacity. Twelve young healthy adults performed power grip exertions on an instrumented vertical cylinder with the maximum and 50% of maximum efforts (far above the grip force required to hold the cylinder), while normal and shear forces at each phalanx of all five fingers in the direction orthogonal to the gravity were recorded. The cylinder surface was varied for high-friction rubber and low-friction paper coverings. An increase in surface friction by replacing the paper covering with the rubber covering resulted in 4% greater mean phalanx normal force (perpendicular to the cylinder surface) and 22% greater mean phalanx shear force in either the proximal or distal direction of the digits (p<0.05; for both 50% and maximum grip efforts). Consequently, increased friction with the rubber surface compared to the paper surface was associated with a 20% increase in the angular deviation of the phalanx force from the direction normal to the cylinder surface (p<0.05). This study demonstrates that people significantly changed the magnitude and direction of phalanx forces depending on the surface they gripped. Such change in the grip strategy appears to help increase grip force generation capacity. This finding suggests that a seemingly simple power grip exertion involves sensory feedback-based motor control, and that people's power grip capacity may be reduced in cases of numbness, glove use, or injuries resulting in reduced sensation.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号