首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The relationship between the activity of chloroplast Photosystem II and the midpoint oxidation-reduction potential of cytochrome b-559
Authors:Peter Horton  Edward Croze
Institution:Division of Cell and Molecular Biology, State University of New York at Buffalo, Buffalo, N.Y. 14214 U.S.A.
Abstract:The role of cytochrome b-559 in Photosystem II reactions has been investigated using hydroxylamine treatment of chloroplast membranes. Incubation of chloroplasts with hydroxylamine in darkness resulted in inhibition of water oxidation and a decrease in the amplitude of cytochrome b-559 reducible by hydroquinone. The loss of water oxidizing activity perfectly correlated with the decrease in amplitude of cytochrome b-559 reduction. Potentiometric titration of cytochrome b-559 after hydroxylamine treatment revealed a component with Em7.8 at +240 mV in addition to a lower potential species at +90 mV. This compared to control chloroplasts in which cytochrome b-559 exists in the typical high potential state, Em7.8 = +383 mV, in addition to some of the low potential (Em7.8 = +77 mV) form. Photosystem II activity could be further inhibited by incubation with hydroxylamine in the light. In these chloroplasts only low rates of photooxidation of artificial electron donors were observed compared to ‘dark’ chloroplasts. In addition, the hydroxylamine light treatment caused a further change in cytochrome b-559 redox properties; a single component, Em7.8 = 90 mV is seen in titration curves. The role of cytochrome b-559 in Photosystem II functioning is discussed on the basis of these observations which suggest a dependence of photooxidizing ability of Photosystem II on the redox properties of this cytochrome.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号