首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spiking behavior and epileptiform oscillations in a discrete model of cortical neural networks
Authors:Daniel Volk
Institution:1. Institute for Theoretical Physics, Cologne University, 50937 Köln, Germany
Abstract:Summary We investigate the phenomenon of epileptiform activity using a discrete model of cortical neural networks. Our model is reduced to the elementary features of neurons and assumes simplified dynamics of action potentials and postsynaptic potentials. The discrete model provides a comparably high simulation speed which allows the rendering of phase diagrams and simulations of large neural networks in reasonable time. Further the reduction to the basic features of neurons provides insight into the essentials of a possible mechanism of epilepsy. Our computer simulations suggest that the detailed dynamics of postsynaptic and action potentials are not indispensable for obtaining epileptiform behavior on the system level. The simulation results of autonomously evolving networks exhibit a regime in which the network dynamics spontaneously switch between fluctuating and oscillating behavior and produce isolated network spikes without external stimulation. Inhibitory neurons have been found to play an important part in the synchronization of neural firing: an increased number of synapses established by inhibitory neurons onto other neurons induces a transition to the spiking regime. A decreased frequency accompanying the hypersynchronous population activity has only occurred with slow inhibitory postsynaptic potentials.
Keywords:Epilepsy  neural network model  cellular automaton  synchronous activity  inhibitory synapses
本文献已被 ScienceDirect SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号