首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular dynamics simulation of Pf1 coat protein.
Authors:D. J. Tobias   M. L. Klein     S. J. Opella
Affiliation:Department of Chemistry, University of Pennsylvania, Philadelphia 19104-6323.
Abstract:
The results of molecular dynamics simulations of Pf1 coat protein are described and compared to experimental NMR data on both the membrane bound and structural forms of this viral coat protein. Molecular dynamics simulations of the 46 residue coat protein and related model sequences were performed according to a simple protocol. The simulations were initiated with the polypeptides in a completely uniform alpha helical conformation in a dielectric continuum (epsilon = 2) and the motions of individual residues were followed as a function of time by monitoring the angular fluctuations of amide NH bond vectors. The simulations of Pf1 coat protein were able to identify the same mobile and structured segments found in experimental NMR studies of the membrane bound form of the protein (Shon, K.-J., Y. Kim, L. A. Colnago, and S. J. Opella. 1991. Science (Wash. DC). 252:1303-1305). Significantly, in addition to mobile amino and carboxyl terminal regions, a mobile internal loop was found that connects the rigid hydrophobic and amphipathic helices in the protein. NMR experiments show that this mobile loop is present in both the viral and membrane bound forms of the protein and that it plays a role in viral assembly (Nambudripad, R., W. Stark, S. J. Opella, and L. Makowski. 1991. Science (Wash. DC) 252:1305-1308). The results of simulations of several alanine based 46 residue polypeptides with some of the charged residues present in the Pf1 coat protein sequence suggest that interactions between the Asp 14 and Asp 18 sidechains and the peptide backbone are responsible for the formation of the mobile loop.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号