首页 | 本学科首页   官方微博 | 高级检索  
     


Projected changes in elevational distribution and flight performance of montane Neotropical hummingbirds in response to climate change
Authors:WOLFGANG BUERMANN  JAIME A. CHAVES  ROBERT DUDLEY  JIMMY A. McGUIRE  THOMAS B. SMITH  DOUGLAS L. ALTSHULER
Affiliation:1. Center for Tropical Research, Institute of the Environment, University of California, Los Angeles, CA 90095, USA;2. Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;3. Department of Integrative Biology, University of California, Berkeley, California 94720, USA;4. Smithsonian Tropical Research Institute, Apdo. 2072, Balboa, Republic of Panama;5. Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, USA;6. Department of Biology, University of California, Riverside, CA 92521, USA
Abstract:
The hovering flight of hummingbirds is one of the most energetically demanding forms of animal locomotion and is influenced by both atmospheric oxygen availability and air density. Montane Neotropical hummingbirds are expected to shift altitudinally upwards in response to climate change to track their ancestral climatic regime, which is predicted to influence their flight performance. In this study, we use the climate envelope approach to estimate upward elevational shifts for five Andean hummingbird species under two climate change scenarios. We then use field‐based data on hummingbird flight mechanics to estimate the resulting impact of climate change on aerodynamic performance in hovering flight. Our results show that in addition to significant habitat loss and fragmentation, projected upwards elevational shifts vary between 300 and 700 m, depending on climate change scenario and original mean elevation of the target species. Biomechanical analysis indicates that such upwards elevational shifts would yield a~2–5° increase in wing stroke amplitude with no substantial effect on wingbeat frequency. Overall, the physiological impact of elevational shifts of <1000 m in response to climate change is likely to be small relative to other factors such as habitat loss, changes in floristic composition, and increased interspecific competition.
Keywords:climate change  elevational shift  hummingbird flight kinematics  wing stroke amplitude  wingbeat frequency
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号