首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years
Authors:JUSTIN M McGRATH  DAVID B LOBELL
Institution:Food Security and the Environment Program, Woods Institute for the Environment and the Freeman Spogli Institute for International Studies, Stanford University, Stanford, CA 94305, USA
Abstract:Accurate estimates of the fertilization effect that elevated carbon dioxide CO2] has on crop yields are valuable for estimation of future crop production, yet there is still some controversy over these estimates due to possible CO2‐by‐water‐status interactions in chamber studies and the difficulty of conducting field experiments with elevated CO2]. This study presents a new method to estimate the CO2 fertilization effect (CFE) in dry conditions (CFEdry), based on a combination of historical yield and climatic data and field experiments that do not require elevated CO2]. It was estimated that approximately 50 years of increasing CO2] (i.e., a 73 ppm increase) resulted in a 9% and 14% improvement of yield in dry conditions for maize and soybean, respectively, which are similar to estimates derived from free air CO2 enrichment (FACE) studies. The main source of uncertainty in this approach relates to differential effects of technology trends such as new cultivars in wet vs. dry years. Estimates of this technology–water interaction can be refined by further experimentation under ambient CO2], offering a cost‐effective path for improving CFE estimates. The results should prove useful for modeling future yield impacts of climate change, and the approach could be used to derive estimates for other species using relatively simple yield trials.
Keywords:carbon dioxide  climate change  CO2 fertilization  crop yield  food security  maize  soybean
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号