首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of Akt Kinase Inhibits Apoptosis and Changes in Bcl-2 and Bax Expression Induced by Nitric Oxide in Primary Hippocampal Neurons
Authors:H Matsuzaki  M Tamatani  N Mitsuda  K Namikawa  H Kiyama  S Miyake  M Tohyama
Institution:Department of Anatomy and Neuroscience, Osaka University Medical School, Japan.
Abstract:Emerging data indicate that growth factors such as insulin-like growth factor-1 (IGF-1) prevent neuronal death due to nitric oxide (NO) toxicity. On the other hand, growth factors can promote cell survival by acting on phosphatidylinositol 3-kinase (PI3-kinase) and its downstream target, serine-threonine kinase Akt, in various types of cells. Here, we examined the mechanism by which IGF-1 inhibits neuronal apoptosis induced by NO in primary hippocampal neurons. IGF-1 was capable of preventing apoptosis and caspase-3-like activation induced by a NO donor, sodium nitroprusside or 3-morpholin-osydnonimine. Incubation of neurons with a P13-kinase inhibitor, wortmannin or LY294002, blocked the effects of IGF-1 on NO-induced neurotoxicity and caspase-3-like activation. In addition, the P13-kinase inhibitors blocked the effect of IGF-1 on down-regulation in Bcl-2 and upregulation in Bax expression induced by NO. Adenovirus-mediated overexpression of the activated form of Akt significantly inhibited NO-induced cell death, caspase-3-like activation, and changes in Bcl-2 and Bax expression. Moreover, expression of the kinase-defective form of Akt almost completely blocked the effects of IGF-1. These findings suggest that activation of Akt is necessary and sufficient for the effect of IGF-1 and is capable of preventing NO-induced apoptosis by modulating the NO-induced changes in Bcl-2 and Bax expression.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号