首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative chlorine and temperature tolerance of the oyster crassostrea madrasensis: Implications for cooling system fouling
Authors:S Rajagopal  V P Venugopalan  G Van Der Velde  H A Jenner
Affiliation:1. Department of Animal Ecology and Ecophysiology, Section Aquatic Animal Ecology, Faculty of Science , University of Nijmegen , Toernooiveld 1, Nijmegen, 6525 ED, The Netherlands;2. Water and Steam Chemistry Laboratory , BARC Facilities , Kalpakkam, Tamil Nadu, 603 102, India;3. KEMA Power Generation and Sustainables , P O Box 9035, Arnhem, 6800 ET, The Netherlands
Abstract:

Crassostrea madrasensis is an important fouling oyster in tropical industrial cooling water systems. C. madrasensis individuals attach to surfaces by cementing one of their two valves to the substratum. Therefore, oyster fouling creates more problems than mussel fouling in the cooling conduits of power stations, because unlike the latter, the shell of the former remains attached to the substratum even after the death of the animal. However, there are no published reports on the tolerance of this species to chlorination and heat treatment. The mortality pattern and physiological behaviour (oxygen consumption and filtration rate) of three size groups (13 mm, 44 mm and 64 mm mean shell length) of C. madrasensis were studied at different residual chlorine concentrations (0.25, 0.5, 0.75, 1, 2, 3 to 5 mg lm 1) and temperatures (30°C to 45°C). The effect of shell size (=age) on C. madrasensis mortality in the presence of chlorine and taking into account temperature was significant, with the largest size group oysters showing highest resistance. At 1 mg lm 1 residual chlorine, the 13 mm and 64 mm size group oysters took 504 h (21 d) and 744 h (31 d), respectively to reach 100% mortality. At 39°C, the 13 mm size group oysters took 218 min to reach 100% mortality, whereas the 64 mm size group oysters took 325 min. The oxygen consumption and filtration rate of C. madrasensis showed progressive reduction with increasing residual chlorine concentrations. However, the filtration rate and oxygen consumption responses of C. madrasensis were not significantly different between 30°C (control) and 37.5°C. There was a sharp decrease in the filtration rate and oxygen consumption at 38.5°C. A comparison of the present mortality data with previous reports on other bivalves suggests that the chlorine tolerance of C. madrasensis lies in between that of Perna viridis and Perna perna, while its temperature tolerance is significantly higher than that of the other two bivalve species. However, in power station heat exchangers, where simultaneous chlorine and thermal stresses are existent, C. madrasensis may have an edge over other common foulants, because of its high temperature tolerance.
Keywords:Biofouling  Power Plants  Crassostrea Madrasensis  Chlorine  Heat Treatment  Mortality  Filtration Rate  Oxygen Consumption
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号