Characterisation of the effect of electrostatic interaction on the structure of Trp-cage using molecular dynamics simulation |
| |
Authors: | Xiaoyu Wu |
| |
Affiliation: | Biochemical and Food Process Engineering, Department of Agricultural and Biological Engineering , Purdue University , West Lafayette, IN, 47907, USA |
| |
Abstract: | A mutated variant of 20 amino acid miniprotein Trp-cage (TC5b), called TC5c (Asp9 replaced by Asn9), was designed to demonstrate the effect of a salt bridge. As a result of strong electrostatic interaction, the distance distribution between Asp9 and Arg16 exhibited a larger probability in the range of the salt bridge for TC5b compared to TC5c. The probability of α-helix formation for residues 3–8, as well as for residues 11–14, was high for TC5b. The salt bridge formation between Asp9 and Arg16 in TC5b was indicated by (a) a strong correlation of their distance of separation with the subtended angle with the centre and (b) a step decrease in the distance between Gly11O and Arg16H at 12 ns. Replica exchange molecular dynamics simulation at different temperatures in the range of 270–590 K indicated that the average distance between Asp9 and Arg16, end-to-end distance, root mean square deviation with respect to a reference NMR structure of TC5b did not change significantly with temperature below 370 K for TC5b and increased at higher temperatures. These values were higher for TC5c for the whole temperature range, with their rate of increase with temperature being higher below 370 K. |
| |
Keywords: | Trp-cage molecular dynamics AMBER protein folding salt bridge |
|
|