首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural properties of sH hydrate: a DFT study of anisotropy and equation of state
Authors:Shaden M Daghash  Phillip Servio
Institution:Department of Chemical Engineering, McGill University, Montréal, Canada
Abstract:ABSTRACT

Structure-H (sH) hydrate is one of the canonical gas hydrates with significant potential applications and scarce characterised material properties despite the wide knowledge available on other gas hydrates. In this work we characterise some of the important physical properties of this hydrate at the atomistic level using Density Functional Theory. Two exchange-correlation functionals (revPBE and DRSLL) were used to simulate six sH hydrate systems encapsulating neohexane and different help gas molecules. The important role of dispersion forces is quantified. The density and isothermal bulk modulus of sH hydrate are higher when dispersion interactions are considered. The presence of those interactions imposes a direct relationship between the hydrate density and its bulk modulus, while their absence reveals the bulk modulus dependency on hydrogen bond density. Anisotropy is a distinguishing feature of this hydrate in distinction to nearly isotropic sI and sII hydrates. Structure-H hydrate experiences a compressional anisotropy in which the a-lattice and the c-lattice constants respond differently to applied pressure showing less compressibility along the c-axis. This compressional anisotropy was found dependant on the chemistry of help gas molecules. Taken together, these property characterisation results and analysis are a significant and novel contribution to the material physics of sH hydrates.
Keywords:Density functional theory  sH hydrate  compressional anisotropy  isothermal bulk modulus  hydrogen bond density
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号