首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of starvation tolerance in pearl millet
Authors:Baysdorfer C  Warmbrodt R D  Vanderwoude W J
Affiliation:U.S. Department of Agriculture, Agricultural Research Service, Building 046A, Beltsville Agricultural Research Center, Beltsville, Maryland 20705.
Abstract:The response of pearl millet (Pennisetum glaucum [L.]) seedlings to prolonged starvation was investigated at the biochemical and ultrastructural level. After 2 days of darkness the bulk of the seedling carbohydrate reserves were depleted. After 8 days in the dark the respiratory rate had declined to less than 50% of its initial value and the plants had lost half of their total protein content. Unlike the situation with carbohydrate depletion, protein loss was restricted to specific organs. The secondary leaf and stem (including the apical meristem) showed little or no protein loss during this period. In the primary leaf, seed, and roots, protein loss was substantial. In spite of the high rate of protein degradation in the primary leaf and roots, these organs showed no ultrastructural changes suggestive of tissue, cellular, or subcellular degradation. In addition, ribulose bisphosphate carboxylase was not preferentially degraded during starvation and only a small decline in chlorophyll content was observed after 8 days in the dark. During the period from 8 to 14 days, cell death started at the tip of the primary leaf and gradually spread downward. Both shoot and root meristems remained alive up to 14 days. Consequently, the eventual death of the plant was due to the loss of the carbohydrate-producing regions rather than the meristems. We suggest that these results provide an explanation for the high degree of starvation tolerance exhibited by pearl millet.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号