Effects of membrane composition and lipid structure on the photopolymerization of lipid diacetylenes in bilayer membranes |
| |
Authors: | E. Lopez D.F. O'Brien T.H. Whitesides |
| |
Affiliation: | Research Laboratories, Eastman Kodak Company, Rochester, NY 14650 U.S.A. |
| |
Abstract: | Molecules analogous to biological and synthetic lipids have been prepared with conjugated diacetylene moieties in the long alkyl chain. These lipid diacetylenes form bilayer structures when suspended in aqueous buffers. Ultraviolet light (254 nm) exposure initiates the polymerization of the diacetylenes in the lipid bilayer to give a fully conjugated, highly colored product. The reaction is topotactic, and its efficiency depends on the correct alignment of the monomeric units. Thus, the lipid diacetylenes are photopolymerizable if the hydrocarbon chains are in a regular lattice found at temperatures below the lipid transition temperature; polymerization is inhibited above this transition. The photopolymerization of a diacetylenic glycerophosphocholine in lipid bilayer membranes was observed in two-component mixtures with a nonpolymerizable lipid, either dioleoylphosphatidylcholine or distearoylphosphatidylcholine. The photochemical and thermochemical characteristics suggest that the diacetylenic glycerophosphocholine exists largely in separate domains in the mixed bilayers. Lipid diacetylenes analogous to a dialkyldimethylammonium salt and to a dialkyl phosphate have a plane of symmetry, which suggests that both chains penetrate equally into the bilayer. The photopolymerization of these symmetrical synthetic species is more than 103-times more efficient than that of the diacetylenic glycerophosphocholine. These differences are interpretable in terms of the expected conformational preference of the lipid molecules. |
| |
Keywords: | Lipid bilayer Photopolymer Diacetylene Phosphatidylcholine |
本文献已被 ScienceDirect 等数据库收录! |