Affiliation: | aInstitute of Endocrinology and Diabetology, Department of Endocrinology, Huashan Hospital, Fu Dan University, 12 Middle Wurumqi Road, Shanghai 200040, People's Republic of China bDepartment of Endocrinology, Affiliated Hospital of Bangbu Medical College, 801 Zhihuai Road, Bangbu of Anhui Province 233004, People's Republic of China |
Abstract: | OBJECTIVE: Mutations in mtDNA are thought to be responsible for the pathogenesis of maternally inherited diabetes. Here, we report a family with maternally inherited diabetes and deafness whose members did not harbour the mtDNA A3243G mutation, the most frequent point mutation in mitochondrial diabetic patients. This study aimed to investigate a possible other mtDNA mutation and its prevalence in type 2 diabetic patients. METHODS: Height, body weight, waistline, and hip circumference were measured and serum biochemical marks determined in all members of the family. In addition, a 75 g oral glucose tolerance test and electric listening test were conducted in these members. Genomic DNA was prepared from peripheral leukocytes. Direct sequencing of PCR products was used to detect the mtDNA mutation in this family. The prevalence of mtDNA G3421A nucleotide substitutions was investigated by restriction fragment length polymorphism analysis in 1350 unrelated type 2 diabetic patients recruited by random cluster sampling from the central city area of Shanghai, China. RESULTS: (1) A new missense homoplasmic mutation of mtDNA G3421A was found in a maternally inherited diabetic family and existed neither in 1350 unrelated type 2 diabetic patients nor in 50 non-diabetic individuals. (2) The mode of mutation and diabetes transmission was typical maternal inheritance in this family. (3) All diabetic family members were found to have an onset at 35-42 years of age, accompanied by deafness of varying degrees. CONCLUSION: mtDNA G3421A (Val39Ile) found in a family with maternally inherited diabetes and deafness is a novel missense mutation. Whether this is a diabetogenic mutation and its effect on mitochondrial function needs to be further studied. |