首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Absorption changes induced by the binding of triazines to the QB pocket in reaction centers of Rhodobacter capsulatus
Authors:Ginet N  Lavergne J
Institution:CEA-Cadarache, DSV-DEVM, Laboratoire de Bioénergétique Cellulaire, 13108 Saint-Paul-lez-Durance, France.
Abstract:Inhibitors which block electron transfer from the primary (Q(A)) to the secondary (Q(B)) quinone of the bacterial reaction center are competing with the pool ubiquinones for binding at the Q(B) pocket. Due to the much greater stability of the semiquinone state Q(B)(-) compared with fully oxidized or reduced quinone, a displacement of the inhibitors takes place after one flash from state Q(A)(-)I to state Q(A)Q(B)(-). This process can be monitored from near-IR absorption changes which reflect local absorption shifts specific to Q(A)(-) and Q(B)(-). An anomalous behavior was observed when using triazines in chromatophores of R. capsulatus: the IR absorption change reflecting the formation of Q(B)(-) after one flash was absent. A normal transient decay of this signal was, however, triggered by a second flash, followed by a rapid return to the baseline. We show that this phenomenon is due to an absorption change induced by inhibitor binding (thus present in the dark baseline), with a spectrum close to that of Q(B)(-), so that the Q(B)(-) changes are canceled out during the inhibitor displacement process. On the second flash, one monitors the destruction of the semiquinone, leading transiently to the Q(A)Q(B) state, followed by inhibitor rebinding. This allows a direct measurement of the binding kinetics. This behavior was observed both in chromatophores and in isolated reaction centers from R. capsulatus, but not in R. sphaeroides.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号