首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterizing the amplitude dynamics of the human core-temperature circadian rhythm using a stochastic-dynamic model
Authors:Indic Premananda  Brown Emery N
Institution:Department of Neurology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, 01655, USA. Premananda.Indic@umassmed.edu
Abstract:Two measures, amplitude and phase, have been used to describe the characteristics of the endogenous human circadian pacemaker, a biological clock located in the hypothalamus. Although many studies of change in circadian phase with respect to different stimuli have been conducted, the physiologic implications of the amplitude changes (dynamics) of the pacemaker are unknown. It is known that phase changes of the human circadian pacemaker have a significant impact on sleep timing and content, hormone secretion, subjective alertness and neurobehavioral performance. However, the changes in circadian amplitude with respect to different stimuli are less well documented. Although amplitude dynamics of the human circadian pacemaker are observed in physiological rhythms such as plasma cortisol, plasma melatonin and core temperature data, currently methods are not available to accurately characterize the amplitude dynamics from these rhythms. Of the three rhythms core temperature is the only reliable variable that can be monitored continuously in real time with a high sampling rate. To characterize the amplitude dynamics of the circadian pacemaker we propose a stochastic-dynamic model of core temperature data that contains both stochastic and dynamic characteristics. In this model the circadian component that has a dynamic characteristic is represented as a perturbation solution of the van der Pol equation and the thermoregulatory response in the data that has a stochastic characteristic is represented as a first-order autoregressive process. The model parameters are estimated using data with a maximum likelihood procedure and the goodness-of-fit measures along with the associated standard error of the estimated parameters provided inference about the amplitude dynamics of the pacemaker. Using this model we analysed core temperature data from an experiment designed to exhibit amplitude dynamics. We found that the circadian pacemaker recovers slowly to an equilibrium level following amplitude suppression. In humans this reaction to perturbation from equilibrium value has potential physiological implications.
Keywords:Biological clock  Amplitude dynamics  Maximum likelihood
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号