首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The flexibility of low molecular weight double-stranded dna as a function of length: I. Isolation and physical characterization of seven fractions
Authors:Jamie E Godfrey
Institution:Department of Polymer Research, The Weizmann Institute of Science, Rehovot, Israel;Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
Abstract:Sonicated calf thymus DNA was fractionated by rate zonal centrifugation into seven fractions with weight average molecular weights ranging from 0.28 to 1.3 × 106 daltons, as determined by sedimentation equilibrium and light scattering measurements (the latter are described in the accompanying paper). Electron microscopy and sedimentation equilibrium analysis revealed these fractions to be narrowly disperse with Mw/Mn ratios averaging about 1.06. Intrinsic viscosities and sedimentation rates were measured and found to vary linearly with molecular weight in double-logarithmic plots in fair agreement with previously published functions relating these parameters for low molecular weight DNA. The average value for β from the Mandelkern— Flory equation was 2.59 × l06, also agreeing with reported estimates of this parameter for short DNA. These data will be used in the second paper of this series to calculate the persistence length of the DNA fragments in each of the seven fractions by light scattering and hydrodynamic theories for the Kratky—Porod worm-like coil.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号