首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spectroscopic properties of the Chlorophyll a–Chlorophyll c 2–Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium
Authors:Dariusz M Niedzwiedzki  Jing Jiang  Cynthia S Lo  Robert E Blankenship
Institution:1. Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO, 63130, USA
2. Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
3. Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
Abstract:Femtosecond time-resolved transient absorption spectroscopy was performed on the chlorophyll a–chlorophyll c 2–peridinin-protein-complex (acpPC), a major light-harvesting complex of the coral symbiotic dinoflagellate Symbiodinium. The measurements were carried out on the protein as well on the isolated pigments in the visible and the near-infrared region at 77 K. The data were globally fit to establish inter-pigment energy transfer paths within the scaffold of the complex. In addition, microsecond flash photolysis analysis was applied to reveal photoprotective capabilities of carotenoids (peridinin and diadinoxanthin) in the complex, especially the ability to quench chlorophyll a triplet states. The results demonstrate that the majority of carotenoids and other accessory light absorbers such as chlorophyll c 2 are very well suited to support chlorophyll a in light harvesting. However, their performance in photoprotection in the acpPC is questionable. This is unusual among carotenoid-containing light-harvesting proteins and may explain the low resistance of the acpPC complex against photoinduced damage under even moderate light conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号