首页 | 本学科首页   官方微博 | 高级检索  
   检索      

亮氨酸脱氢酶偶联NADH再生体系合成L-2-氨基丁酸
引用本文:张利坤,肖延铭,杨卫华,华超,王云,李敬亚,杨套伟.亮氨酸脱氢酶偶联NADH再生体系合成L-2-氨基丁酸[J].生物工程学报,2020,36(5):992-1001.
作者姓名:张利坤  肖延铭  杨卫华  华超  王云  李敬亚  杨套伟
作者单位:1 长兴制药股份有限公司 工业生物催化与转化浙江省工程研究中心,浙江 长兴 313100;2 江南大学 生物工程学院,江苏 无锡 214122
基金项目:国家高技术研究发展计划 (863计划) (No. 2015AA021004) 资助。
摘    要:文中以大肠杆菌BL21(DE3)为宿主,构建两株分别共表达亮氨酸脱氢酶(LDH,来源蜡样芽孢杆菌)/甲酸脱氢酶(FDH,来源水生弯杆菌)和亮氨酸脱氢酶(LDH,来源蜡样芽孢杆菌)/醇脱氢酶(ADH,来源红球菌)的重组大肠杆菌。通过偶联两种不同NADH再生体系,以L-苏氨酸为起始原料,利用苏氨酸脱氨酶(L-TD)与LDH-FDH或LDH-ADH一锅法合成L-2-氨基丁酸,并对LDH-FDH工艺和LDH-ADH工艺进行对比优化。LDH-FDH工艺的最适反应pH为7.5,最适反应温度为35℃,通过加入50 g/L甲酸铵、0.3 g/L NAD+、10%LDH-FDH粗酶液(V/V)和7 500 U/L的L-TD酶液,对L-苏氨酸进行分批补加,以便控制2-丁酮酸浓度小于15 g/L,反应28 h,实现了L-2-氨基丁酸的产量为161.8 g/L,产率97%。LDH-ADH工艺的最适pH为8.0,最适反应温度为35℃,通过加入0.3 g/L NAD+、10%LDH-ADH粗酶液(V/V)及7 500 U/L的L-TD酶液,分批补加L-苏氨酸及1.2倍摩尔量异丙醇,以便控制2-丁酮酸浓度小于15g/L,且每生成约40g/L的L-2-氨基丁酸,抽真空去除丙酮,反应24h,实现了L-2-氨基丁酸的产量为119.6 g/L,产率98%。文中所采用的工艺及结果可为L-2-氨基丁酸的工业化提供一定的参考依据。

关 键 词:共表达,L-2-氨基丁酸,生物催化,NADH再生
收稿时间:2020/6/20 0:00:00

Synthesis of L-2-aminobutyric acid by leucine dehydrogenase coupling with an NADH regeneration system
Likun Zhang,Yanming Xiao,Weihua Yang,Chao Hu,Yun Wang,Jingya Li,Taowei Yang.Synthesis of L-2-aminobutyric acid by leucine dehydrogenase coupling with an NADH regeneration system[J].Chinese Journal of Biotechnology,2020,36(5):992-1001.
Authors:Likun Zhang  Yanming Xiao  Weihua Yang  Chao Hu  Yun Wang  Jingya Li  Taowei Yang
Institution:1 Zhejiang Engineering Research Center of Industrial Biocatalysis and Transformation, Changxing Pharmaceutical Co. Ltd., Changxing 313100, Zhejiang, China; 2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
Abstract:In this study, Escherichia coli BL21 (DE3) was used as the host to construct 2 recombinant E. coli strains that co-expressed leucine dehydrogenase (LDH, Bacillus cereus)/formate dehydrogenase (FDH, Ancylobacter aquaticus), or leucine dehydrogenase (LDH, Bacillus cereus)/alcohol dehydrogenase (ADH, Rhodococcus), respectively. L-2-aminobutyric acid was then synthesized by L-threonine deaminase (L-TD) with LDH-FDH or LDH-ADH by coupling with two different NADH regeneration systems. LDH-FDH process and LDH-ADH process were optimized and compared with each other. The optimum reaction pH of LDH-FDH process was 7.5, and the optimum reaction temperature was 35 °C. After 28 h, the concentration of L-2-aminobutyric acid was 161.8 g/L with a yield of 97%, when adding L-threonine in batches for controlling 2-ketobutyric acid concentration less than 15 g/L and using 50 g/L ammonium formate, 0.3 g/L NAD+, 10% LDH-FDH crude enzyme solution (V/V) and 7 500 U/L L-TD. The optimum reaction pH of LDH-ADH process was 8.0, and the optimum reaction temperature was 35 °C. After 24 h, the concentration of L-2-aminobutyric acid was 119.6 g/L with a yield of 98%, when adding L-threonine and isopropanol (1.2 times of L-threonine) in batches for controlling 2-ketobutyric acid concentration less than 15 g/L, removing acetone in time and using 0.3 g/L NAD+, 10% LDH-ADH crude enzyme solution (V/V) and 7 500 U/L L-TD. The process and results used in this paper provide a reference for the industrialization of L-2-aminobutyric acid.
Keywords:co-expression  L-2-aminobutyric acid  biocatalysis  NADH regeneration
本文献已被 CNKI 等数据库收录!
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号