首页 | 本学科首页   官方微博 | 高级检索  
     


Genomic clustering of tRNA-specific adenosine deaminase ADAT1 and two tRNA synthetases
Authors:Stefan Maas  Yang-Gyun Kim  Alexander Rich
Affiliation:(1) Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA, US
Abstract:Human tRNA-specific adenosine deaminase (hADAT1) specifically converts A37 in the anticodon loop of human tRNAAla to inosine via a hydrolytic deamination mechanism. The enzyme is related to a family of RNA editing enzymes (ADARs) specific for pre-mRNA, and it has been cloned based on its sequence homology to the catalytic domain of ADARs. In the present study we have analyzed the 5′-flanking sequence of the murine ADAT1 gene, revealing that the first transcribed exon is located 1.1 kb downstream from the polyadenylation site of lysyl tRNA synthetase (KARS). The close proximity is conserved in the human genome with an intergenic distance of 5.5 kb. We determined the complete cDNA sequence as well as exon/intron organization of murine KARS. Significant sequence similarities between KARS and ADAT1 are apparent within their substrate interaction domains. Radiation hybrid panel analysis mapped human ADAT1 and human KARS to region q22.2–22.3 of Chromosome (Chr) 16 with alanyl tRNA synthetase (AARS) positioned centromeric to the KARS and ADAT1 genes. 16q22–24 has recently been recognized as a susceptibility candidate locus for several autoimmune inflammatory diseases. The clustering of three tRNA specific genes, of which two are specific for tRNAAla, may indicate their evolutionary relatedness or common factors involved in regulating their expression. Received: 1 November 2000 / Accepted: 18 December 2000
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号