An Integrin Binding-defective Mutant of Insulin-like Growth Factor-1 (R36E/R37E IGF1) Acts as a Dominant-negative Antagonist of the IGF1 Receptor (IGF1R) and Suppresses Tumorigenesis but Still Binds to IGF1R |
| |
Authors: | Masaaki Fujita Katsuaki Ieguchi Dora M. Cedano-Prieto Andrew Fong Charles Wilkerson Jane Q. Chen Mac Wu Su-Hao Lo Anthony T. W. Cheung Machelle D. Wilson Robert D. Cardiff Alexander D. Borowsky Yoko K. Takada Yoshikazu Takada |
| |
Affiliation: | From the Departments of ‡Dermatology.;§Biochemistry and Molecular Medicine.;¶Pathology, and ;‖Surgery and ;the **Division of Biostatistics, Clinical and Translational Science Center, University of California Davis School of Medicine, Sacramento, California 95817 |
| |
Abstract: | Insulin-like growth factor-1 (IGF1) is a major therapeutic target for cancer. We recently reported that IGF1 directly binds to integrins (αvβ3 and α6β4) and induces ternary complex formation (integrin-IGF1-IGF1 receptor (IGF1R)) and that the integrin binding-defective mutant of IGF1 (R36E/R37E) is defective in signaling and ternary complex formation. These findings predict that R36E/R37E competes with WT IGF1 for binding to IGF1R and inhibits IGF signaling. Here, we described that excess R36E/R37E suppressed cell viability increased by WT IGF1 in vitro in non-transformed cells. We studied the effect of R36E/R37E on viability and tumorigenesis in cancer cell lines. We did not detect an effect of WT IGF1 or R36E/R37E in cancer cells under anchorage-dependent conditions. However, under anchorage-independent conditions, WT IGF1 enhanced cell viability and induced signals, whereas R36E/R37E did not. Notably, excess R36E/R37E suppressed cell viability and signaling induced by WT IGF1 under anchorage-independent conditions. Using cancer cells stably expressing WT IGF1 or R36E/R37E, we determined that R36E/R37E suppressed tumorigenesis in vivo, whereas WT IGF1 markedly enhanced it. R36E/R37E suppressed the binding of WT IGF1 to the cell surface and the subsequent ternary complex formation induced by WT IGF1. R36E/R37E suppressed activation of IGF1R by insulin. WT IGF1, but not R36E/R37E, induced ternary complex formation with the IGF1R/insulin receptor hybrid. These findings suggest that 1) IGF1 induces signals under anchorage-independent conditions and that 2) R36E/R37E acts as a dominant-negative inhibitor of IGF1R (IGF1 decoy). Our results are consistent with a model in which ternary complex formation is critical for IGF signaling. |
| |
Keywords: | Cancer Drug Discovery Extracellular Matrix Growth Factors Insulin-like Growth Factor (IGF) Integrins Mutant Signal Transduction |
|
|