首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Par14 Protein Associates with Insulin Receptor Substrate 1 (IRS-1), Thereby Enhancing Insulin-induced IRS-1 Phosphorylation and Metabolic Actions
Authors:Jun Zhang  Yusuke Nakatsu  Takanori Shinjo  Ying Guo  Hideyuki Sakoda  Takeshi Yamamotoya  Yuichiro Otani  Hirofumi Okubo  Akifumi Kushiyama  Midori Fujishiro  Toshiaki Fukushima  Yoshihiro Tsuchiya  Hideaki Kamata  Misaki Iwashita  Fusanori Nishimura  Hideki Katagiri  Shin-ichiro Takahashi  Hiroki Kurihara  Takafumi Uchida  Tomoichiro Asano
Abstract:Pin1 and Par14 are parvulin-type peptidyl-prolyl cis/trans isomerases. Although numerous proteins have been identified as Pin1 substrates, the target proteins of Par14 remain largely unknown. Par14 expression levels are increased in the livers and embryonic fibroblasts of Pin1 KO mice, suggesting a compensatory relationship between the functions of Pin1 and Par14. In this study, the association of Par14 with insulin receptor substrate 1 (IRS-1) was demonstrated in HepG2 cells overexpressing both as well as endogenously in the mouse liver. The analysis using deletion-mutated Par14 and IRS-1 constructs revealed the N-terminal portion containing the basic domain of Par14 and the two relatively C-terminal portions of IRS-1 to be involved in these associations, in contrast to the WW domain of Pin1 and the SAIN domain of IRS-1. Par14 overexpression in HepG2 markedly enhanced insulin-induced IRS-1 phosphorylation and its downstream events, PI3K binding with IRS-1 and Akt phosphorylation. In contrast, treating HepG2 cells with Par14 siRNA suppressed these events. In addition, overexpression of Par14 in the insulin-resistant ob/ob mouse liver by adenoviral transfer significantly improved hyperglycemia with normalization of hepatic PEPCK and G6Pase mRNA levels, and gene suppression of Par14 using shRNA adenovirus significantly exacerbated the glucose intolerance in Pin1 KO mice. Therefore, although Pin1 and Par14 associate with different portions of IRS-1, the prolyl cis/trans isomerization in multiple sites of IRS-1 by these isomerases appears to be critical for efficient insulin receptor-induced IRS-1 phosphorylation. This process is likely to be one of the major mechanisms regulating insulin sensitivity and also constitutes a potential therapeutic target for novel insulin-sensitizing agents.
Keywords:Akt  Glucose Metabolism  Insulin  Liver  Signal Transduction  IRS-1  Insulin Signaling  Par14  Pin1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号