首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Calcium Sensor-Regulated Protein Kinase,CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, Is Required for Pollen Tube Growth and Polarity
Authors:Liming Zhou  Wenzhi Lan  Binqing Chen  Wei Fang  Sheng Luan
Institution:College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China (L.Z., W.F.);;Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China (W.L., S.L.);;College of Biological Sciences, China Agricultural University, Beijing 100193, China (B.C.); and;Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (S.L.)
Abstract:Calcium plays an essential role in pollen tube tip growth. However, little is known concerning the molecular basis of the signaling pathways involved. Here, we identified Arabidopsis (Arabidopsis thaliana) CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19 (CIPK19) as an important element to pollen tube growth through a functional survey for CIPK family members. The CIPK19 gene was specifically expressed in pollen grains and pollen tubes, and its overexpression induced severe loss of polarity in pollen tube growth. In the CIPK19 loss-of-function mutant, tube growth and polarity were significantly impaired, as demonstrated by both in vitro and in vivo pollen tube growth assays. Genetic analysis indicated that disruption of CIPK19 resulted in a male-specific transmission defect. Furthermore, loss of polarity induced by CIPK19 overexpression was associated with elevated cytosolic Ca2+ throughout the bulging tip, whereas LaCl3, a Ca2+ influx blocker, rescued CIPK19 overexpression-induced growth inhibition. Our results suggest that CIPK19 may be involved in maintaining Ca2+ homeostasis through its potential function in the modulation of Ca2+ influx.In flowering plants, fertilization is mediated by pollen tubes that extend directionally toward the ovule for sperm delivery (Krichevsky et al., 2007; Johnson, 2012). The formation of these elongated tubular structures is dependent on extreme polar growth (termed tip growth), in which cell expansion occurs exclusively in the very apical area (Yang, 2008; Rounds and Bezanilla, 2013). As this type of tip growth is amenable to genetic manipulation and cell biological analysis, the pollen tube is an excellent model system for the functional analysis of essential genes involved in polarity control and fertilization (Yang, 2008; Qin and Yang, 2011; Bloch and Yalovsky, 2013).It is well established that Ca2+ plays a critical role in pollen germination and tube growth (Konrad et al., 2011; Hepler et al., 2012). A steep tip-focused Ca2+ gradient has been detected at the tip of elongating pollen tubes (Rathore et al., 1991; Pierson et al., 1994; Hepler, 1997). In previous studies, artificial dissipation of the Ca2+ gradient seriously inhibited tip growth of pollen tubes, whereas elevation of internal Ca2+ level induced bending of the growth axis toward the zone of higher Ca2+. These studies suggest that Ca2+ not only controls pollen tube elongation but also modulates growth orientation (Miller et al., 1992; Malho et al., 1994; Malho and Trewavas, 1996; Hepler, 1997). These Ca2+ signatures are perceived and relayed to downstream responses by a complex toolkit of Ca2+-binding proteins that function as Ca2+ sensors (Yang and Poovaiah, 2003; Harper et al., 2004; Dodd et al., 2010).To date, four major Ca2+ sensor families have been identified in Arabidopsis (Arabidopsis thaliana), including calcium-dependent protein kinase, calmodulin (CaM), calmodulin-like (CML), and CALCINEURIN B-LIKE (CBL) proteins (Luan et al., 2002, 2009; Yang and Poovaiah, 2003; Harper et al., 2004). Calcium-dependent protein kinase family members comprise a kinase domain and a CaM-like domain in a single protein; thus, they act not only as a Ca2+ sensor but also as an effector, designated as sensor responders (Cheng et al., 2002). In contrast, CaM, CML, and CBL proteins do not have any enzymatic domains but transmit Ca2+ signals to downstream targets via Ca2+-dependent protein-protein interactions. Therefore, they have been designated as sensor relays (McCormack et al., 2005). While CaM and CML proteins interact with a diverse array of target proteins, it is generally accepted that CBLs interact specifically with a group of Ser/Thr protein kinases termed CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASEs (CIPKs; Luan et al., 2002; Kolukisaoglu et al., 2004).In Arabidopsis, several CBLs coupled with their target CIPKs have been demonstrated to function in the regulation of ion homeostasis and stress responses (Luan et al., 2009). Under salt stress, SALT OVERLY SENSITIVE3 (SOS3)/CBL4-SOS2/CIPK24 regulate SOS1 at the plasma membrane for Na+ exclusion, whereas CBL10-CIPK24 complexes appear to regulate Na+ sequestration at the tonoplast (Liu et al., 2000; Qiu et al., 2002; Kim et al., 2007; Quan et al., 2007). For low-K+ stress, CBL1 and CBL9, with 87% amino acid sequence identity, interact with CIPK23, which regulates a voltage-gated ion channel (ARABIDOPSIS K+ TRANSPORTER1) to mediate the uptake of K+ in root hairs (Li et al., 2006; Xu et al., 2006; Cheong et al., 2007). In addition, CBL1 integrates plant responses to cold, drought, salinity, and hyperosmotic stresses (Albrecht et al., 2003; Cheong et al., 2003), and CBL9 is involved in abscisic acid signaling and biosynthesis during seed germination (Pandey et al., 2004). Over the past decade, the functions of CBL-CIPK complexes in abiotic stress tolerance have been studied extensively, but only limited studies focus on CBL family members in pollen tube growth. For example, CBL3 overexpression caused a defective phenotype in pollen tube growth (Zhou et al., 2009). Overexpression of CBL1 or its closest homolog CBL9 inhibited pollen germination and perturbed tube growth at high external K+, whereas disruption of CBL1 and CBL9 leads to a significantly reduced growth rate of pollen tubes under low-K+ conditions (Mähs et al., 2013). The potential roles of CIPKs in pollen tubes so far appear to be completely unknown.In this study, we demonstrated that Arabidopsis CIPK19, a CIPK specifically expressed in pollen grains and pollen tubes, functions in pollen tube tip growth, providing a new insight into the function of the CBL-CIPK network in the control of growth polarity during pollen tube extension in fertilization.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号