首页 | 本学科首页   官方微博 | 高级检索  
     


RNA polymerase and gal repressor bind simultaneously and with DNA bending to the control region of the Escherichia coli galactose operon.
Authors:G Kuhnke   C Theres   H J Fritz     R Ehring
Affiliation:Institut für Genetik, Universität zu Köln, FRG.
Abstract:The Escherichia coli galactose operon contains an unusual array of closely spaced binding sites for proteins governing the expression from the two physically overlapping gal promoters. Based on studies of two gal promoter-up mutants we have previously suggested RNA-polymerase-induced DNA bending of gal promoter DNA. Here we present new evidence confirming and extending this interpretation. It was obtained by the circular permutation assay of gel electrophoretic mobility [Wu and Crothers (1984), Nature, 308, 509-513] applied to three analogous series of circularly permuted fragments derived from wild-type and two promoter-up mutant DNAs. The same circularly permuted DNA fragments have further been used to study the binding of gal repressor to its operator sites by electrophoretic mobility shift and by DNase I footprinting techniques. The main results are: (i) complexes carrying repressor either exclusively at the upstream operator O1 or at the downstream operator O2 exhibit different electrophoretic mobilities; (ii) binding to either one of the operators results in protein-induced DNA bending by the criteria of the circular permutation mobility assay; and (iii) occupation of both gal operators by gal repressor does not prevent cAMP-CRP-independent binding of RNA polymerase to the gal promoters, as judged by DNase I protection and gel retardation assays. The latter finding imposes constraints on any attempt to model the regulation of gal expression by assumed DNA-protein and protein-protein interactions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号