首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High affinity interaction of integrin alpha4beta1 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers
Authors:Klemke Martin  Weschenfelder Tatjana  Konstandin Mathias H  Samstag Yvonne
Institution:Institute for Immunology, University of Heidelberg, Heidelberg, Germany.
Abstract:The capacity of tumor cells to form metastatic foci correlates with their ability to interact with and migrate through endothelial cell layers. This process involves multiple adhesive interactions between tumor cells and the endothelium. Only little is known about the molecular nature of these interactions during extravasation of tumor cells. In human melanoma cells, the integrin alphavbeta3 is involved in transendothelial migration and its expression correlates with metastasis. However, many human melanoma cells do not express beta3 integrins. Therefore, it remained unclear how these cells undergo transendothelial migration. In this study we show that human melanoma cells with different metastatic potency, which do not express beta2 or beta3 integrins, express the VCAM-1 receptor alpha4beta1. VCAM-1 is up-regulated on activated endothelial cells and is known to promote transendothelial migration of leukocytes. Interestingly, despite comparable cell surface levels of alpha4beta1, only the highly metastatic melanoma cell lines MV3 and BLM, but not the low metastatic cell lines IF6 and 530, bind VCAM-1 with high affinity without further stimulation, and are therefore able to adhere to and migrate on isolated VCAM-1. Moreover, we demonstrate that function-blocking antibodies against the integrin alpha4beta1, as well as siRNA-mediated knock-down of the alpha4 subunit in these highly metastatic human melanoma cells reduce their transendothelial migration. These data imply that only high affinity interactions between the integrin alpha4beta1 on melanoma cells and VCAM-1 on activated endothelial cells may enhance the metastatic capacity of human beta2/beta3-negative melanoma cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号