Spontaneous local membrane curvature induced by transmembrane proteins |
| |
Affiliation: | 1. Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany;2. National Center for High-Performance Computing Erlangen (NHR@FAU), Erlangen, Germany |
| |
Abstract: | The (local) curvature of cellular membranes acts as a driving force for the targeting of membrane-associated proteins to specific membrane domains, as well as a sorting mechanism for transmembrane proteins, e.g., by accumulation in regions of matching spontaneous curvature. The latter measure was previously experimentally employed to study the curvature induced by the potassium channel KvAP and by aquaporin AQP0. However, the direction of the reported spontaneous curvature levels as well as the molecular driving forces governing the membrane curvature induced by these integral transmembrane proteins could not be addressed experimentally.Here, using both coarse-grained and atomistic molecular dynamics (MD) simulations, we report induced spontaneous curvature values for the homologous potassium channel Kv 1.2/2.1 Chimera (KvChim) and AQP0 embedded in unrestrained lipid bicelles that are in very good agreement with experiment. Importantly, the direction of curvature could be directly assessed from our simulations: KvChim induces a strong positive membrane curvature ( nm?1) whereas AQP0 causes a comparably small negative curvature ( nm?1).Analyses of protein-lipid interactions within the bicelle revealed that the potassium channel shapes the surrounding membrane via structural determinants. Differences in shape of the protein-lipid interface of the voltage-gating domains between the extracellular and cytosolic membrane leaflets induce membrane stress and thereby promote a protein-proximal membrane curvature. In contrast, the water pore AQP0 displayed a high structural stability and an only faint effect on the surrounding membrane environment that is connected to its wedge-like shape. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|