首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rational Design of Nanocatalysts with Nonmetal Species Modification for Electrochemical CO2 Reduction
Authors:Yunzhen Wu  Shuyan Cao  Jungang Hou  Zhuwei Li  Bo Zhang  Panlong Zhai  Yanting Zhang  Licheng Sun
Abstract:Converting CO2 to valuable carbonaceous fuels and chemicals via electrochemical CO2 reduction by using renewable energy sources is considered to be a scalable strategy with substantial environmental and economic benefits. One of the challenges in this field is to develop nanocatalysts with superior electrocatalytic activity and selectivity for targeted products. Nonmetal species modification of nanocatalysts is of great significance for the construction of distinctive active sites to overcome the kinetic limitations of CO2 reduction. These types of modification enable the efficient control of the selectivity and significantly decrease the reaction overpotential. Herein, a comprehensive review of the recent progress of nonmetal species modification of nanocatalysts for electrochemical CO2 reduction is presented. After discussing some fundamental parameters and the basic principles of CO2 reduction, including possible reaction pathways in light of theoretical modeling and experiments, the identification of active sites and elucidation of reaction mechanisms are emphasized for unraveling the role of nonmetal species modification, such as heteroatom incorporation, organic molecule decoration, electrolyte engineering, and single‐atom engineering. In the final section, future challenges and constructive perspectives are provided, facilitating the accelerated advancement of mechanism research and practical applications of green carbon cycling.
Keywords:active sites  CO2 reduction  nonmetal species modification  reaction mechanisms  selectivity regulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号