首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Restoration of miR-29b exerts anti-cancer effects on glioblastoma
Authors:Shin  Jaekyung  Shim  Hyun Geun  Hwang  Taeyoung  Kim  Hyungsin  Kang  Shin-Hyuk  Dho  Yun-Sik  Park  Sung-Hye  Kim  Sang Jeong  Park  Chul-Kee
Institution:1.Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, China
;2.Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
;
Abstract:Background

Methylation plays an important role in the etiology and pathogenesis of colorectal cancer (CRC). This study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) and pathways in CRC by comprehensive bioinformatics analysis.

Methods

Data of gene expression microarrays (GSE68468, GSE44076) and gene methylation microarrays (GSE29490, GSE17648) were downloaded from GEO database. Aberrantly methylated-DEGs were obtained by GEO2R. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. MCODE was used for module analysis of the PPI network.

Results

Totally 411 hypomethylation-high expression genes were identified, which were enriched in biological processes of response to wounding or inflammation, cell proliferation and adhesion. Pathway enrichment showed cytokine–cytokine receptor interaction, p53 signaling and cell cycle. The top 5 hub genes of PPI network were CAD, CCND1, ATM, RB1 and MET. Additionally, 239 hypermethylation-low expression genes were identified, which demonstrated enrichment in biological processes including cell–cell signaling, nerve impulse transmission, etc. Pathway analysis indicated enrichment in calcium signaling, maturity onset diabetes of the young, cell adhesion molecules, etc. The top 5 hub genes of PPI network were EGFR, ACTA1, SST, ESR1 and DNM2. After validation in TCGA database, most hub genes still remained significant.

Conclusion

In summary, our study indicated possible aberrantly methylated-differentially expressed genes and pathways in CRC by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of CRC. Hub genes including CAD, CCND1, ATM, RB1, MET, EGFR, ACTA1, SST, ESR1 and DNM2 might serve as aberrantly methylation-based biomarkers for precise diagnosis and treatment of CRC in the future.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号