首页 | 本学科首页   官方微博 | 高级检索  
     


Biomechanics of human quadriceps muscles during electrical stimulation
Authors:Stein R B  Momose K  Bobet J
Affiliation:Department of Physiology, Faculty of Medicine, University of Alberta, Edmonton, Canada. richard.stein@ualberta.ca
Abstract:
The quadriceps muscles of neurologically intact and spinal cord injured (SCI) human subjects were stimulated with constant current pulses. Up to three, separately adjustable stimulating electrodes over the motor points for vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were used to maximize torque generation while minimizing discomfort. The torque generated by stimulation increased as the knee was slowly flexed to about 1 rad (50-60 degrees) and decreased beyond that point (a 'negative slope' on a torque-angle curve). Despite this region of negative slope the force generated by small oscillations remained positively correlated to the angle changes. When the knee was slowly extended again from a flexed position, the torque continued to decline and therefore showed a large degree of 'hysteresis'. Of the three heads studied, only stimulation of RF muscle generally produced this behavior. VL and VM had torques that increased monotonically with knee flexion over the range studied. The torques generated with electrical stimulation of normal subjects represented up to about 30% of maximum voluntary contraction. When subjects generated similar torques voluntarily, the negative slope region and substantial hysteresis were not observed. Thus, SCI subjects may be adversely affected by hysteresis during electrically-induced transitions from sitting to standing and vice versa, while normal subjects are not.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号