Electron Flow to the Intersystem Chain from Stromal Components and Cyclic Electron Flow in Maize Chloroplasts, as Detected in Intact Leaves by Monitoring Redox Change of P700 and Chlorophyll Fluorescence |
| |
Authors: | Asada, Kozi Heber, Ulrich Schreiber, Ulrich |
| |
Affiliation: | 1The Research Institute for Food Science, Kyoto University Uji, Kyoto, 611 Japan 2Lehrstuhl fr Botanik I, Universitt Wrzburg Mittlerer Dallenbergweg, Wrzburg, D-8700, Germany |
| |
Abstract: | The functional pool size of electrons in the intersystem chainof the chloroplasts of maize was estimated to be about 25 perP700 by the redox change in P700 with single- and multiple-turnoverlights under far-red light in intact leaves. This is about twicethe pool size observed in C3 plants. Furthermore, the stromalpool size of electrons that can be donated to P700+ after actinicillumination was larger in maize leaves than in leaves of C3plants, giving a maximum value of 225 electrons per P700. Maizeleaves showed an increase in the yield of modulated Chl fluorescenceafter turning off of actinic light, which confirms the donationof electrons in the dark to the intersystem chain from the stromaldonors that accumulated during actinic illumination. We proposethat the mesophyll chloroplasts are responsible for a high levelof electron-donating activity to the intersystem chain fromstromal donors such as triose phosphates and malate with NADPHas an intermediate. The level of P700+ under strong far-redlight was decreased after actinic illumination, suggesting theoperation of an actinic light-triggered cyclic electron flowin chloroplasts of the bundle sheath cells. (Received August 14, 1992; Accepted October 13, 1992) |
| |
Keywords: | |
本文献已被 Oxford 等数据库收录! |
|