首页 | 本学科首页   官方微博 | 高级检索  
     


The use of cobalt ions as a collisional quencher to probe surface charge and stability of fluorescently labeled bilayer vesicles
Authors:S J Morris  D Bradley  R Blumenthal
Abstract:Co2+ quenched the fluorescence of the lipid probes NBD-phosphatidylethanolamine (NBD-PE) and lissamine-rhodamine phosphatidylethanolamine (N-Rh-PE) incorporated into lipid vesicles, according to a collisional quenching mechanism in agreement with the Stern-Vollmer law. The quenching coefficient (Q) for NBD-PE, incorporated into uncharged phosphatidylcholine (PC) vesicles was 13.8 M-1. This value was equal to the quenching coefficient of water-soluble NBD-taurine in aqueous solution, indicating that Co2+ was readily accessible to the outer surface of PC vesicles. In phosphatidylserine-phosphatidylethanolamine (PS-PE) (1:1) vesicles, quenching was also proportional to Co2+ concentration but Q was 114 mM-1, some 8000-fold smaller. Using the Gouy-Chapman-Stern model we demonstrated that the surface density of Co2+ bound to lipid was linear with Co2+ concentration in the medium up to 7%. Co2+-associated phospholipid would in turn quench NBD-PE or N-Rh-PE by collisional quenching with lateral diffusion. We investigated the ability of Co2+ to permeate PS-PE (1:1) vesicles. Co2+ quenched fluorophores on the outer surface of large unilamellar vesicles, formed by reverse-phase evaporation. In small unilamellar vesicles Co2+ quenched probes on both outer and inner surfaces, indicating rapid permeation of the ions into the vesicles. Using stopped-flow rapid mixing, we measured the rate of influx of Co2+, and correcting for surface potential using the Gouy-Chapman-Stern model, we calculated a permeability coefficient of 10(-12) cm/s for Co2+ concentrations below 300 microM. Above this concentration, there was a very steep rise in the permeability coefficient, indicating that binding of Co2+ induces defects in the bilayer of these vesicles. This may be related to the ability of the vesicles to undergo membrane fusion. A method for calculating the membrane surface potential from Co2+ quenching data is presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号