首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soil type affects nitrogen conservation in foliage of small Pinus sylvestris L. trees
Authors:Margus Pensa  Arne Sellin
Institution:(1) Institute of Ecology, Tallinn Pedagogical University, 15 Pargi St., 41537 Jõhvi, Estonia;(2) Department of Botany and Ecology, University of Tartu, 40 Lai St., 51005 Tartu, Estonia
Abstract:Nutrient conservation in plants and soil fertility may be intricately linked. We studied nitrogen conservation in small Scots pine (Pinus sylvestrisL.) trees growing in stands on organogenic Dystric Histosols and on mineral Podzols. Nitrogen-resorption efficiency (NRE) and proficiency (NRP) of senescent needles, and mean residence time of nitrogen (MRT) were studied in relation to needle surface area, needle longevity, and leaf mass per area (LMA). Trees on Podzols had higher nitrogen concentration in green needles than the trees on Dystric Histosols, but the nitrogen concentration of yellowing needles was similar for trees on both soil types. NRE averaged 65±3.5% (mean±SD) and 56±7.2% for the trees on Podzols and Dystric Histosols, respectively. Neither NRP (0.44±0.05% and 0.35±0.07%, respectively) nor MRT (8.4±2.3 and 6.1±1.2 years) differed significantly between the stands on the two soil types. Mean needle surface area was significantly smaller in trees on Dystric Histosols (76±29 mm2) than on Podzols (131±38 mm2), whereas needle longevity varied between 2 and 4 years independently of the soil type. Trees invested, on average, the same amount of dry matter per unit of needle area on both soil types. Growth of trees, measured as increment of shoot length, was more restricted on Dystric Histosols (55±18 mm yr–1) than on Podzols (184±44 mm yr–1). The results of the correlation analysis applied to pooled data were inconsistent with the relations between traits of stress resistance syndrome observed in inter-specific comparisons. The study indicated that Scots pine trees relocated nitrogen from senescent foliage more efficiently on mineral Podzols than on organogenic Dystric Histosols, but the minimum nitrogen concentration of needles appeared to be similar on both soil types.
Keywords:leaf longevity  nitrogen concentration  nitrogen-resorption efficiency  nitrogen-resorption proficiency  Pinus sylvestris  soil type
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号