A versatile high-throughput screen for inhibitors of lipid kinase activity: development of an immobilized phospholipid plate assay for phosphoinositide 3-kinase gamma |
| |
Authors: | Fuchikami Kinji Togame Hiroko Sagara Atsuko Satoh Tomoko Gantner Florian Bacon Kevin B Reinemer Peter |
| |
Affiliation: | Asthma Research, Bayer Yakuhin Ltd., Research Center Kyoto, Japan. |
| |
Abstract: | The family of phosphoinositide 3-kinases (PI3K) regulates fundamental cellular responses such as proliferation, apoptosis, motility, and adhesion. In particular, the PI3K gamma isoform plays a critical role in the control of cell migration. Despite the attractiveness of PI3-kinases as drug targets, drug discovery efforts have been hampered by the lack of appropriate lipid kinase assay formats suitable for high-throughput screening. The authors report the development of a simple and robust 384-well plate assay that is based on(33) P-phosphate transfer from radiolabeled [gamma(33) P]ATP to phosphatidylinositol immobilized on Maxisorp plates. The established assay format for PI3K gamma was easily adapted to the automated screening platform and was successfully employed for high-throughput screening. Enzymatic and inhibition characteristics of recombinant human PI3K gamma determined with the plate assay are in very good agreement with previously reported values determined in other assay formats. Maximal catalytic activity of PI3K gamma was observed at pH 7.0. The apparent K(m) value for ATP using a 1:1 mixture of phosphatidylinositol and phosphatidylserine was determined to be 7.3 microM (6.0-8.6 microM, 95% confidence interval [CI]). IC(50) values for known PI3-kinase inhibitors were determined to be 1.45 nM (1.17-1.80 nM, 95% CI) for wortmannin and estimated from partial inhibition data to be 1400, 2830, and 21,400 nM for quercetin, LY294002, and staurosporine, respectively. This novel assay approach allows for screening of inhibitors of lipid kinases in high-throughput mode and thereby may facilitate the identification of novel inhibitory structures for drug development. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|