首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum.
Authors:B E Wood and  L O Ingram
Abstract:The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号