首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oxidative stress,DNA damage,and histological alterations in Bombyx mori exposed orally to pesticide dimethoate
Authors:Hashim Ashraf Qadri  Ayesha Qamar  Nikhil Maheshwari
Institution:1. Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, India;2. Department of Biochemistry, Aligarh Muslim University, Aligarh, India
Abstract:Pesticides are an essential part of agricultural practices that ward off pathogens and diseases from the agricultural crop. However, apart from target organisms, these chemicals also have adverse effects on non-target organisms. Dimethoate is an insecticide used extensively in agriculture and horticulture practices worldwide. We used the silkworm Bombyx mori as a model organism to study the effect of commercial formulation of dimethoate (Dimethoate-30% EC) on the gut, silk gland, and fat body tissues. LD50 of dimethoate-30% EC on silkworm (B. mori) was 997 ppm, as reported in a previous study. We used concentrations of 25, 50, and 100 ppm in our experiments. Our results showed that sub-lethal doses of dimethoate caused weight loss and induced damage at the histological level to the mid-gut, silk gland, and fat body of B. mori. It also caused a decrease in the level of antioxidants like CAT, SOD, GPx, GSH, and GST, indicating that dimethoate has produced a shift of ROS balance towards free radical generation and therefore resulted in overall damage to this organism. Sub-lethal doses of this pesticide also caused lipid peroxidation in the silk gland, gut, and fat body of B. mori, damaging these tissues. The disruption was also seen in the mid-gut and middle silk gland at the DNA level, where it caused single-strand breaks, as was revealed by single cell gel electrophoresis studies. Damage at histological, biochemical, and molecular levels was most extreme at a concentration of 100 ppm, the highest sub-lethal concentration given to B. mori.
Keywords:Bombyx mori  comet assay  dimethoate  histological alteration  organophosphate  oxidative stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号